
 LICAS GUI

GUIDE October 16, 2018

1

Licas All-in-One Scientific
GUI

Version 1.2

[A guide to using the GUI application for
viewing or testing networks running on the

licas system]

Kieran Greer,

Email: kgreer@distributedcomputingsystems.co.uk.

http://distributedcomputingsystems.co.uk/licas.html

Licas Gui Guide V1.2

 2

Table of Contents

1 Introduction ... 3

2 Behaviour Panel ... 4

2.1 Script File Group Box ... 4

2.2 Create Services Section ... 5

2.3 Dataset Files .. 6

2.4 Heuristic Settings ... 6

2.5 Constructors .. 6

2.6 Other Configurations ... 7

2.7 Script Validation .. 7

2.8 Executing the Behaviour Services ... 7

3 Problem Solver Panel ... 8

3.1 Script File Group Box ... 9

3.2 Solver (Select / Change) Classes Group Box .. 9

3.3 Framework and Heuristics group Box ... 9

3.3.1 Heuristic Options Table .. 10

3.4 Dataset Files .. 10

3.5 Behaviour Services Selection .. 10

3.6 Constructors .. 11

3.7 Solver Variables ... 11

3.8 Test Run Variables ... 11

3.9 Other Configurations ... 11

3.10 Run Solver Group Box .. 11

4 Query Panel .. 12

4.1 Server Metrics or Stats .. 13

4.2 Query Details Group Box ... 13

4.3 Linking Options Group Box .. 13

4.4 Execute Query Group Box ... 13

4.5 Creating Structure through Linking ... 14

Licas Gui Guide V1.2

 3

1 Introduction

This guide describes the free All-in-One GUI application that comes with the licas server

system and how to use the scientific functionality. You need to read the ‘licasGui’ document

first for all background information. This document then describes the scientific panels and

how to use them.

Licas Gui Guide V1.2

 4

2 Behaviour Panel

This panel can be used to run or test your own algorithms that might perform some sort of

behaviour or self-organisation. Figure 1 shows what the behaviour panel looks like. There is

also a Behaviour Mediator service that can be run. If it is available, then both the

behaviour and problem solving processes will send their information to it, for display

purposes. The behaviour mediator is described in more detail in the ‘licasService’ document.

Figure 1: Behaviour Panel

The behaviour panel is somewhat configurable and should allow you to load in different

algorithm types or evaluation functions etc. You can also configure each service with a data

file, or add a linking service, etc. The following sections will describe more clearly what can be

configured. The structure of this panel is similar to the problem solver panel (section 3), but

where the problem-solver can also be centralised, behaviours are always distributed.

2.1 Script File Group Box

If you have saved a script previously, you can load it in again from the Script File set of

options. The script will be displayed in the Document tab, from where it can also be edited

Licas Gui Guide V1.2

 5

manually. Use this to browse to an existing script file and load it into the Documents text

area. A behaviour test does not require a script as much as the problem solver does, but it

can store the configuration more easily, allowing you to quickly setup the test environment.

Any script that is loaded can then be updated when you enter different data values.

2.2 Create Services Section

The Create Services section allows you to select a set of service classes, to use to create

the behaviour service. The lists of services can be updated through the Service Factory,

as described in other documents. Each default class that is added should now have a text

description. A class name is not very descriptive, so a text description helps to define what

the class is about. Whenever a class type is selected, its description should also be displayed

in the related text box. To create a behaviour network using the default classes, you need to

define three types of class. These are:

• Behaviour Class: this is the class to load as the behaviour service itself. There is a default

one in the licas package that contains its own control loop, to periodically evaluate some

value and try to link based on the evaluation result. This is represented by the classname

itself.

• Heuristic Class: the behaviour service can be loaded with an evaluator service. This is

passed the value to evaluate and returns the result. While the behaviour controls the

overall process, it still needs a service to measure or evaluate the information that it

receives. This could be a collective evaluation over all available data, as in the default

linking service heuristics. So changing the heuristic will change the behaviour result.

• Metric Class: the heuristic service can be loaded with a specific evaluator or metric

service. This can evaluate or compare two values differently and so changing this will

change the result of the heuristic. The heuristics and metrics are concepts that are

generally known and so they are represented by their names instead.

• Data Generator Class: the behaviour service can also be loaded with a data generator, to

generate random or other data for testing the network with. There are some default data

generators that can return string or number-based values, or even parse an XML file to

generate some java objects, based on Bag-of-Words structures.

If you are not reading data files, then a data generator is required as well. To create a

behaviour network, you then need to select the number of services to create by typing a

number into the Initial solutions text box. You then also need to include a minimum

and maximum value for the data generator. These values should be typed into the Min

Value and Max Value text boxes. If you include a folder with files, then that overrides

these settings. The number of files determines the number of services that are created and a

Licas Gui Guide V1.2

 6

data generator is not required because the data is read from each file. The linking heuristic

classes are described more in the ‘licasProblemSolver’ document.

2.3 Dataset Files

This section is an extension of the Service and heuristics section and it is required to define

the data type at least. It can be used to define the data type that should be generated and

any optional files that should be read. Only the file directory needs to be declared, where all

of the files in that directory would then be parsed and loaded. This results in two entries in

the script – one for the data type and one for the directory file path. When configuring the

script, care should be taken to make sure that the selected data type is compatible with the

selected data files. You can also use the Data Type combo box, without any folder path, to

indicate a data type for a data generator. The default algorithm uses the String data type.

If a data generator is used, you can specify the number of solutions, and the minimum and

maximum values, as described in section 2.2. With Strings, for example, a minimum value of

2 and a maximum value of 5 will give the data value of the services a range from 2 to 5

characters. The algorithm then tries to cluster based on similar values.

2.4 Heuristic Settings

With the introduction of the new metric classes, some might require additional configuration

parameters. These would be specified here and you only need to enter a value for any that

you need to use. You also need to highlight the ones that you need to use. When you update

the script, these should get added. When you select a heuristic, a small description should be

displayed that may contain some shorthand at the end.

• SIB means that it will evaluate a smaller value as better.

• LIB means that it will evaluate a larger value as better.

• After that, you might get an initialisation parameter name in shorthand as well. MKP, for

example, is displayed for the Minkowski heuristic. If you look at this section, you can see

that there is an mkp entry. So in that case, to use the heuristic, you also need this

parameter value, which you must set and then Update the script first, before running.

To set, click on the Value column and enter a value in the related row.

2.5 Constructors

Each behaviour service can be initialised with an admin script, plus passwords. You can

browse to add the admin script from a file. The passwords are then set automatically and may

Licas Gui Guide V1.2

 7

be ‘anon’. You need to create the script file first, which can be done through the Service

Factory form, for example.

2.6 Other Configurations

The Other Config section allows for easy configuration of other values. The Server

button will ask if you want to copy the details of the currently running server to your script.

The Dynamic links button will open a form to allow you to enter the threshold and other

values related to initialising the linking services. To make sure that a link is created, set the

increment value to be larger than the threshold values – to 10 in the original form, for

example. If you click the Remove check box, you can remove currently saved values instead.

2.7 Script Validation

The Update button can be used to display and validate the script before running it. If the

Validate check box is selected, the script is evaluated for missing or incorrect values. This

is also the case with the problem solver panel and script. If the validation report looks

incorrect, you can ignore it by unchecking this box. Note that a full script validation is not

possible because there are different ways to execute a test, but missing values should be

flagged. For example, all 3 service classes are required for a behaviour network, but the

problem solver might not require all 3 classes, where they can default to ‘none’. The script

checker only makes sure that the base behaviour service is defined. When configuring the

problem solver, the behaviour panel values are added first, before the problem-solver specific

values are added, so the behaviour panel is required for both types of problem.

2.8 Executing the Behaviour Services

If you click the Run Script button the behaviours will be loaded onto the network. They

are also automatically started, so the main thread of the Auto class is automatically started.

This is because a behaviour is assumed to be more autonomous and should run its own loop.

The services will continue to run until the program code indicates that they should shut down.

With the default clustering algorithms, they will run continuously and update dynamic link

sets. This provides a changing picture of the permanent links between services and is

indeterminate. To manually stop the services from running, you can click the Stop

Threads button. The example behaviour service (LinkService) is distributed, where it looks

up the addresses of other services and asks them directly, rather than accessing through the

central server. It also configures itself at the start, through the admin script that is setup to

include the evaluator and data generator class types. The behaviour service uses the

‘finaliseInitialisation’ method to create and add these services.

Licas Gui Guide V1.2

 8

3 Problem Solver Panel

The problem solving package can either be run through the GUI, or on a separate program,

but using the GUI server and display, for example. Tests are run in the same way as previously,

by creating a test script and then executing that script. Details on all of the script variables

can be found in the ‘licasProblemSolver’ guide. The GUI panel can be used to configure or

change the script and then execute it to perform the specified tests. Figure 2 shows what the

problem solver panel looks like.

Figure 2. Problem Solver Panel

The process for using this panel is as follows:

• You can either load in an existing script or generate an empty one. If no script exists,

an empty script is automatically generated when you press the Update button. You

can use the example script as a template, for example, as some of the variables might

be unfamiliar. Read the ‘licasProblemSolver’ document for more details.

• After each change, you can then press the Update button again and the change should

appear in the script displayed in the Document text area.

Licas Gui Guide V1.2

 9

• Note that the heuristic-specific variables should be displayed in the table, where the

second column is editable. If a variable requires a value, then you must enter it there.

In Figure 2, for example, Mutate Percent or Crossover Percent would

require a value, but the currently selected do not. Only the selected variables are

transferred to the script.

It is also possible to load in your own base classes that can be used to change the heuristic

options that are available. This has not been fully tested, but it does work and can allow

these classes to be changed to ones in a remote jar file. The following sections describe

this further.

3.1 Script File Group Box

This is the same as for the Behaviour Panel of section 2.1, but it will read a different

script and display a slightly different set of values.

3.2 Solver (Select / Change) Classes Group Box

You can use these options to change the base solver classes that determine what heuristics

can be used. You might have overridden the SolverFactory, to add your own new

heuristics, for example. You can load in a new jar file from the Service Factory and

select the classes to add. The options allow you to:

• Solver Factory: this allows you to load in a different solver factory. This is the base object

that controls all of the other configurable objects that are returned for a particular

heuristic value. See the ‘licasProblemSolver’ document for details on the solver factory

and what classes can be changed.

In the problem solver panel, you can then browse to and select your solver class from this

section.

3.3 Framework and Heuristics group Box

The base framework that is used to evaluate the script can be changed. You can now select

between the grid-based hyper-heuristic or hill-climbing, or a new distributed linking options.

The linking option should work in the same way as a behaviour, but instead of running

continuously, it only executes the specified number of distributed comparisons. A framework

should then list a number of compatible heuristics and variables. This allows the heuristic,

metric or evaluation function and the types of evolution, or other options, to be selected. The

Licas Gui Guide V1.2

 10

SolverFactory can be changed by adding a new module and specifying a new solver factory

class in the Service Config form’s ‘Add other Class’ section. You then select the same

class for the same function in the problem solver panel.

3.3.1 Heuristic Options Table

As in section 2.4, these values are very important and they can cause the test to fail if they

are missing. If you select a particular heuristic type, the description might indicate that a

configuration value is necessary. The shortened description should match one of the options

in this table. You need to both enter a value, make sure it is set and also select or highlight

the table row, for the value to be added to the script. If a value is not required, you just need

to highlight the row, or all rows that are to be used. The heuristic description also indicates if

a smaller or a larger value is better, leading to the following shortened notation:

• SIB means that it will evaluate a smaller value as better.

• LIB means that it will evaluate a larger value as better.

• After that, you might get an initialisation parameter name in shorthand as well. The

genetic algorithms require a Crossover and/or Mutate setting, for example. Then Update

the script first, before running.

3.4 Dataset Files

This section can be used to define the data type that should be generated and any files that

should be read, in a similar way to the behaviour component of section 2.3. It is actually

required for the default problem solving test however, where it is optional for the default

behaviour test. This panel also includes an additional File/URI check box. The default is to

browse to a folder and read each file in the folder as the data for a service. For a large dataset,

for example, there might be only one file to read, as for the SOM, for example. So clicking this

check box allows you to select a single file instead of a folder. It is then stored as a URI address.

3.5 Behaviour Services Selection

The Select Base Service section allows you to select the test service type. Only one

service type is selected for the problem solving tasks. The other boxes to store a number of

solutions (initially one per service) and arbitrary minimum or maximum numerical values are

also provided. Depending on the test, you might not use data files and so these variables are

available again, as for the behaviour script. Note that the default classes use the data files

however, so to not use them, you need to add your own classes.

Licas Gui Guide V1.2

 11

3.6 Constructors

Each problem-solving service can be initialised with an admin script, plus passwords, in the

same way as for the behaviour services of section 2.5.

3.7 Solver Variables

Each framework can have some additional variables that are specific to the related problem

solver. These are listed here as key-value pairs. After each selection, you should click the

Update button to save the change. One has been added to the Test Run Variables

section for convenience. Note that there is now a text description of each variable.

3.8 Test Run Variables

Each framework can have some additional variables that are specific to the test process or

the test loop that runs. These are listed here as key-value pairs. After each selection, you

should click the Update button to save the change. One has been added here for

convenience. Note that there is now a text description of each variable.

3.9 Other Configurations

This is similar to section 2.6.

3.10 Run Solver Group Box

The run option has been updated to allow a subsequent test run from the current situation.

You can therefore start a test using the Run new test option. This will create initial services

and solutions and execute the specified number of test runs. By default, the main service

loops (Auto class) are not started, so this is completely in contrast with the Behaviour panel

process. This is because the problem solver is more centralised, where the problem is solved

locally and then a mediator sends the result to the services, so that they can update

themselves with it. So, it is managed by the central problem-solving algorithm.

If you then click the Run from current button, the specified number or test runs will be

executed again, but using the current sets of services and solutions. It would also update the

current set of dynamic links and does not reset them to zero. Any test uses the test script to

define what test to carry out. The check boxes allow you to specify other more specialised

features, but default values will work in general.

Licas Gui Guide V1.2

 12

4 Query Panel

The query panel can be used to execute queries from the system query engines, of which

there are now two. The panel has been updated to make use of the different linking options

that are available. Figure 3 shows what the query panel looks like. This example uses the

default query engine that searches over the service metadata in the server’s repository. It has

a type of Search metadata in the top Query engine / type box. The

‘licasAdminGuide’ document has more details on the structure of a query, but intuitively, you

can see that it is asking for service IDs that contain a particular value – ‘5’ in this case. The

‘licasUserGuide’ document has more details on how the distributed query process over more

than one server works.

Figure 3: Query Panel

You can query the nodes running on your local server, or if you have registered a number of

networks, the query can be run over all of the registered servers. This can be performed

automatically if you register the addresses of other servers with the local server. The

scripts folder in the default ‘licasData’ location now contains 3 example query scripts. You

can use the Template button to load one in and then change it as required. In the example,

the services have been loaded through the Service Group panel (see the ‘licasGui’

document), creating 20 Information services. Added to this panel is a query form to allow

you to construct queries manually. This is actually the same query form that the Textflo

system uses (see the DCS web site). The query displayed produces the XML script shown in

the figure panel. Note that you can probably skip sibling elements now and still retrieve the

Licas Gui Guide V1.2

 13

correct XML section. It might also be helpful to download the Textflo system or

documentation and test queries over whole documents using that.

4.1 Server Metrics or Stats

The second option can be used to search over metrics that get stored for each service method

request. Each method that is passed t a service is now counted, as well as the message size.

You can use this query engine to retrieve information from a server about what services have

received the most invocations, and so on. It is still a work in process and does not return

specific values, but comparisons at the moment. This is illustrated in Figure 4.

4.2 Query Details Group Box

Although there is a built-in query engine with the licas system, you can also load in a different

query engine as a new service, select its type and use that instead. This should be loaded onto

the HttpServer server as a base service. If you then retrieve all of the service types from

the Admin Panel options, you will also retrieve the new query engine service type. This

will be included in the Query engine combo box, from where it can be selected. Note that

the query engine that you provide should implement the QueryDef interface, so that the

method that is automatically called to execute the query is available and also have a different

type to the default ones.

4.3 Linking Options Group Box

This allows you to link up nodes as part of the query process. You firstly need to add a linking

service to each node. This can be done using the server popup menu. Right click the server

graphic and select the ‘Utility service / Linker’ option. The Linker form opens (see ‘licasGui’

document). If you just click OK, the default linking values are added to each Information

service. You can switch on a view of the nested services using the Admin panel. The default

linker settings indicate a link threshold of 0.4 and an increment value of 0.1. These can then

be used as described next.

4.4 Execute Query Group Box

This group box provides the options to allow you to execute a query or retrieve some

statistical information. If you click the execute button, the query description will be sent to

the server to be executed. The server will look for a child service of the service type specified

in the Query Engine combo box and then try to execute the executeQuery method

Licas Gui Guide V1.2

 14

specified in the QueryDef interface on it. This method will be expected to return an XML

description of the reply. Figure 3 shows one example of a query that has been executed. The

query engine is of type query engine and the first service of that type that is found on

the network will be used. The network itself is a hierarchical network and an XML-based query

has been executed on it. The query reply is also displayed.

The query reply is then written out to the output text area on the GUI. How the reply is

generated, or how the query is evaluated depends entirely on what service you provide as a

query engine. It only needs to implement the interface to be useable. Some information is

output when you execute a query or try to retrieve stats, to let you know that the process is

on-going. This is displayed at the bottom of this group box. Note that the default licas services

do not store any data themselves, so to query data you would also need to extend the

Service class or use the Information service possibly. You would then create the network

using the new class.

Figure 4: Autonomic manager metrics, or server stats query.

4.5 Creating Structure through Linking

You select these options through the two Linking Options combo boxes. You also need

to select the Update links check box for linking to be included. The query process will

Licas Gui Guide V1.2

 15

then try to create links based on the query reply. Local nodes, or nodes running on the current

server, can be linked up either by creating permanent links immediately, or by creating

permanent links from the dynamic ones, when the related weight value passes the top link

threshold value, for the Linker service. In the figure, each time the query is executed; nodes

related through the query reply have their dynamic link values updated. Remote nodes –

running on a different server, can only be represented by the dynamic links or service

associations. A structure with permanent links to remote server nodes is not possible.

The query reply can return services or nodes associated through the query execution. In the

figure, the query is looking for services with an ID value that contains the number 2.

Therefore, services ‘i_2’, ‘i_12’ and ‘i_20’ will be returned for this query. As permanent links

were selected, after the first query reply; if you refresh the view, you should see a link

between these services. In the figure, if ‘dynamic to permanent’ was selected, then this

requires a reinforcement of the link until the weight value exceeds the link threshold. If you

execute the specified query 5 times in a row, the weight value is 0.5 and the threshold is 0.4.

Therefore, if you refresh the view after each execution, you will see no change until the 5th

execution, when the permanent links will be drawn. That is really all that the dynamic linking

process is. You can also retrieve the metadata values during the process to check them.

There is also a possibility to retrieve statistics of the query process by clicking the Get Stats

button. The implementation of this however needs to be included in a query engine that you

provide as the default query engine does not have one. The GUI will then call the getStats

method on this engine and expect to get an XML reply for the result. This reply will then be

written to the output text area as well.

	1 Introduction
	2 Behaviour Panel
	2.1 Script File Group Box
	2.2 Create Services Section
	2.3 Dataset Files
	2.4 Heuristic Settings
	2.5 Constructors
	2.6 Other Configurations
	2.7 Script Validation
	2.8 Executing the Behaviour Services

	3 Problem Solver Panel
	3.1 Script File Group Box
	3.2 Solver (Select / Change) Classes Group Box
	3.3 Framework and Heuristics group Box
	3.3.1 Heuristic Options Table

	3.4 Dataset Files
	3.5 Behaviour Services Selection
	3.6 Constructors
	3.7 Solver Variables
	3.8 Test Run Variables
	3.9 Other Configurations
	3.10 Run Solver Group Box

	4 Query Panel
	4.1 Server Metrics or Stats
	4.2 Query Details Group Box
	4.3 Linking Options Group Box
	4.4 Execute Query Group Box
	4.5 Creating Structure through Linking

