public class NearestNeighbour extends AlgorithmCompareTree
KD_Tree tree.| Modifier and Type | Field and Description |
|---|---|
protected int |
ksize
The number of nearest neighbours to return
|
protected EvaluateMathDef |
mathCompare
Single value math comparisons - simple type
|
bs, kdTreebestEval, evalMetric| Constructor and Description |
|---|
NearestNeighbour(FunctionMetric thisEvalMetric,
EvaluateMathDef mathEval)
Create a new empty instance of NearestNeighbour.
|
NearestNeighbour(java.lang.String thisValueType,
java.util.HashMap<java.lang.String,?> thisConfig)
Create a new instance of NearestNeighbour.
|
| Modifier and Type | Method and Description |
|---|---|
ReplySet |
evaluate(MetricDataset cDataset)
Calculate the closest ksize data points from each pont to the other and use this to cluster.
|
protected void |
initialise()
Initialise the function values, setting the config parameters or other.
|
protected java.util.ArrayList<java.util.ArrayList<java.lang.String>> |
toClusters(java.util.HashMap<java.lang.String,java.util.ArrayList<KD_TreeNode>> nnGroups)
Convert the groups of nn nodes to clusters of node names.
|
getDatasetTree, resetValues, setDatasetTree, updateTreegetBestEvaluationcheckValueType, createFunction, createFunction, createFunction, getConfigParams, innerObject, isLegalNumber, setConfigParams, setEvaluator, setValueTypeprotected int ksize
protected EvaluateMathDef mathCompare
public NearestNeighbour(FunctionMetric thisEvalMetric, EvaluateMathDef mathEval) throws java.lang.Exception
thisEvalMetric - the distance function.mathEval - for simple math comparisons.java.lang.Exception - any error.public NearestNeighbour(java.lang.String thisValueType,
java.util.HashMap<java.lang.String,?> thisConfig)
throws java.lang.Exception
thisValueType - the type of object being evaluated. Can be null if set later or not used.thisConfig - list of initialisation function-specific parameters.
Use AiHeuristicConst.KNN to store the number of nearest neighbours value,
.DIM to store the number of dimensions value, .EVALUATOR to store the
instance of the base mathCompare evaluator.
java.lang.Exception - any error.protected void initialise()
initialise in class AlgorithmCompareTreepublic ReplySet evaluate(MetricDataset cDataset) throws java.lang.Exception
evaluate in interface FunctionDefevaluate in class FunctioncDataset - the dataset to cluster, as specified above. Add all points to the tree and
then return clusters for the new dataset points.datasets list, as ArrayList lists.
You can use ((Integer)ReplySet.getValue()).intValue() to retrieve the cluster values.java.lang.Exception - any error.protected java.util.ArrayList<java.util.ArrayList<java.lang.String>> toClusters(java.util.HashMap<java.lang.String,java.util.ArrayList<KD_TreeNode>> nnGroups)
nnGroups - the groups of nn nodes to cluster.