GET SERVER DETAILS FOR A CLIENT

A server is protected by passwords. These can default to Const . ANON for an open server, or
you can set them to something else. You might want to add the security details for a server to
your client application so that the server can be invoked at some later time. To call the server in
any case, you need to know the full ip address. If it is password protected, then you also need to
know the password. If you are the administrator of the server, then you should also know its
admin key. If you do not know these and the server is running with default settings, then it will
automatically return its password when asked for it, but it does not return the admin key.

You will then want to save these details in your own program for accessing later. You can use
the licas PasswordHandler to store any of the password details. The code to ask for these
details might look as follows:

//[some imports that might be required

import org.licas.call.*;

import org.licas.util.*;

import org.jlog2.exception.ExceptionHandler;
import org.jlog2.*;

import org.licas_xml.abs.*;

import org.licas_xml.model.*;

//[some variables that might be required

boolean isOK; /ltrue if OK

String serverPassword; //server password

String adminKey; /lthe server admin key

Element serverUri; /Iserver uri

MethodInfo methodInfo; //used to store the method information
CallObject callObject; /lused to make the remote method call
PasswordHandler passwordHandler; /lpassword handler

Each Service is automatically loaded with a password handler and is used to store the
passwords for each service that it wants to interact with. You can however add one manually to
any other class, when it can be used for the same purpose. Note the default settings, as they are
possibly not used.

passwordHandler = new PasswordHandler(Const. ANON, Const. ANON);

[Iretrieve the server url, of the form server URL and Const. HTTPSERVER value.
serverUri = <Handle><U>http://123.4.5.6:8888/</U><S>HttpServer</S></Handle>

e Create a new MethodInfo object and fill with the appropriate parameter values. You can
also use MethodFactory.createMethodCall instead.

e Ask the server for its password using the getPassword method. The parameters to this
method can be anything if the default classes are used. This is because the default service



implementation always returns its password when asked for and so it does not check the
values of the input parameters. The method structure still needs to be correct however.
e Therefore, a password value of 'anon' and an XML description with any content will suffice.

methodInfo = new MethodInfo();
methodInfo.setName(MethodConst. GETPASSWORD); /Iname of method to invoke

methodInfo.setRtnType(TypeConst.STRING); //method return type
methodInfo.setServiceURI(serverUri); /lthe url of the server
methodInfo.addParam(Const. ANON)); /lany parameter value

methodInfo.addParam(XMLFactory.getInstance().createElement(*"abc”, "abc™));

callObject = new CallObject();
serverPassword = (String)call.call(methodInfo);

e The second parameter value can be anything for default settings.

e If you add contracts that require negotiations, then you might need something specific here.

e You are not allowed to ask for any service ‘admin key' as this provides access to values that
should not be changed by anybody except for the server administrator or owner. You
therefore need to know what the server admin key is, or a default

e Solution is to set it to be the same as the server password. If nothing is entered, they default
to ‘Const. ANON”.

You can also check if the server has been initialised properly by checking if the enterprise
service bus is running.

methodInfo = new MethodInfo();
methodInfo.setName(MethodConst. HASESB);
methodInfo.setRtnType(TypeConst. BOOLEAN);
methodInfo.setServiceURI(serverUri);
methodInfo.setServerPassword(serverPassword);
methodInfo.setPassword(serverPassword);
methodInfo.addParam(new Paraminfo(serverPassword));
iISOK = ((Boolean)call.call(methodInfo)).booleanValue();

If this is OK, then you can store the passwords for later retrieval. Because there might be
several servers and they all have the uuid of Const.HTTPSERVER, you should store the
passwords with the ‘whole url' as the server id, to tell them apart.

if (isOK)

{
passwordHandler.addServicePassword(serverUri, serverPassword);
passwordHandler.addAdminKey(serverUri, adminKey); //if known



