ADD OR UPDATE A DYNAMIC LINK BETWEEN
TWO SERVICES

A link can be used to associate two services based on some criteria and represents a reference to
some type of object or resource. The links can be created or destroyed dynamically depending
on the system use. With the link, there is a descriptive path, which is made up of a list of
concepts related to the link. This concept list is arbitrary and can represent anything, keywords
in a query, for example. If you update a link then a weight value associated with it can be
reinforced. If the weight value passes a threshold, then the link can be considered as reliable. If
the link exists (path description and URI) but the association subsequently does not, the link
can be decremented again until it gets removed. The ‘licasArchitecture’ guide, book, or ‘licas’
research papers describe this further.

CREATE/ADD/UPDATE DYNAMIC LINK

If you add/update a dynamic link using the service methods, if the link already exists, then its
weight value can be increased. The purpose of the links is to represent the current situation by
changing dynamically over time. There can be several sources that relate to a particular path,
but over time, one or other of them may become more popular. The linking structure therefore
includes a descriptive path and a set of sources. For an update, the service then retrieves all
sources that it has stored under that path. If a stored source reference is part of the current
update, the source weight can be incremented. If it is not part of the current update, the weight
value can be decremented. So adding or updating link information will only reinforce the
current result set and decrement all of the other ones that are part of the same path structure.
You only need to add a linking service to your own service and then invoke the
addRelatedSources method on it to maintain the dynamic links.

//[some variables that might be required

String serverPassword; /Iserver password

String servicePassword; /Iservice password

Element serverUri; /Iserver uri

Element serviceUri; /Iservice uri

ArrayL.ist sources; /ist of source references
ArrayList concepts; /list of concepts in the link path
ArrayList negativeConcepts; /list of concepts to block a link
MethodInfo methodInfo; /Imethod info

CallObject callObject; /call object

/lyou need to know what address the remote server is running on
serverUri = remote server handle to call.

[lyou can create the service uri from the server uri and the service uuid as follows
serviceUri = Handle.createNewUrlHandle(Handle.getURI(serverUri));
serviceUri = Handle.addToHandle(serviceUri, Handle.asHandleElement(serviceUuid));



serviceUri = Handle.addToHandle(serviceUri,
Handle.asHandleElement(ServiceConst.LINKER));
servicePassword = passwordHandler.getServicePassword(serviceUuid); //or serviceUri

/la hopefully simpler way to add the links is through single lists for each path separately
/Ithis is the path description in order, for example query conditions, or metadata values
concepts = new ArrayL.ist();

concepts.addElement(conceptl);

concepts.addElement(concept2);

IIretrieve the references to the sources that you want to include as links

/lthis could be a direct reference or a uri path, or mostly, a Handle description
sources = new ArrayList();

sources.addElement(source URI 1);

sources.addElement(source URI 2);

/Inegative concepts is part of a test case and can usually be empty
negativeConcepts = new ArrayL.ist();

//make a method call to add the new linking information
methodInfo = new MethodInfo();
methodInfo.setName(MethodConst. ADDRELATEDSOURCES);
methodInfo.setRtnType(TypeConst. ARRAYLIST);
methodInfo.setServerURL(serverUri);
methodInfo.setServiceURI(serviceUri);
methodInfo.setServerPassword(serverPassword);
methodInfo.setPassword(servicePassword);
methodInfo.addParamInfo(sources);
methodInfo.addParamInfo(concepts);
methodInfo.addParamInfo(negativeConcepts);
call.call(methodInfo);

This should create a structure like: conceptl->concept2->all source references

RETRIEVE DYNAMIC LINK INFORMATION

You can then ask a particular service if it has any dynamic links that relate to a certain linking
path, or list of concepts. Only the links that are at the top level (pass the top threshold value, see
the papers) in the linking structure will be returned. You use the getLinkedSources
method to do this. Other more local or admin-related methods can retrieve the whole structure.

/[some variables that might be required

String serverPassword; /Iserver password

String servicePassword,; /[service password

Element serverUri; [[server uri

Element serviceUrti; /[service uri

ArrayList sourcePaths; /list of source paths

ArrayList concepts; /st of concepts in the link path



ArrayL.ist negativeConcepts; ist of concepts to block a link
MethodInfo methodInfo; /Imethod info
CallObject callObject; /[call object

/initialise the call invocation object and retrieve the server passwords.

/lthe server URL is appended with Const. HTTPSERVER as part of the handle address.
callObject = new CallObject();

serverUri = remote server to call.

/lyou can create the service uri from the server uri and the service uuid as follows

serviceUri = Handle.createNewUrlIHandle(Handle.getURI(serverUri));

serviceUri = Handle.addToHandle(serviceUri, Handle.asHandleElement(serviceUuid));

serviceUri = Handle.addToHandle(serviceUri,
Handle.asHandleElement(ServiceConst.LINKER));

//add the concepts in the link path
concepts = new ArrayList();
concepts.add(conceptl);
concepts.add(concept2);

/Imake negative concepts empty for default use
negativeConcepts = new ArrayL.ist();

/lalso need the server uri and password, and the service password.
//Other code examples show how these can be saved and retrieved from the PasswordHandler
serverPassword = passwordHandler.getServicePassword(serverUri);

/lthe password can be saved under different formats — local uuid or full handle address
servicePassword = passwordHandler.getServicePassword(serviceUuid);

//make the method call to retrieve any link information
methodInfo = new MethodInfo();
methodInfo.setName(MethodConst. GETLINKEDSOURCEYS);
methodInfo.setRtnType(TypeConst. ARRAYLIST);
methodInfo.setServerURL(serverUri);
methodInfo.setServiceURI(serviceUri);
methodInfo.setServerPassword(serverPassword);
methodInfo.setPassword(servicePassword);
methodInfo.addParamInfo(concepts);
methodInfo.addParamInfo (negativeConcepts);
sourcePaths = (ArrayList)callObject.call(methodInfo);

The mechanism works exactly as expected. If, for example, you increment by 0.1 three times
and the threshold is 0.25, then it should become a reliable top level source. If you then
decrement once, it should be moved down a level and not be returned.



