

ADD OR UPDATE A DYNAMIC LINK BETWEEN

TWO SERVICES

A link can be used to associate two services based on some criteria and represents a reference to

some type of object or resource. The links can be created or destroyed dynamically depending

on the system use. With the link, there is a descriptive path, which is made up of a list of

concepts related to the link. This concept list is arbitrary and can represent anything, keywords

in a query, for example. If you update a link then a weight value associated with it can be

reinforced. If the weight value passes a threshold, then the link can be considered as reliable. If

the link exists (path description and URI) but the association subsequently does not, the link

can be decremented again until it gets removed. The ‘licasArchitecture’ guide, book, or ‘licas’

research papers describe this further.

CREATE/ADD/UPDATE DYNAMIC LINK

If you add/update a dynamic link using the service methods, if the link already exists, then its

weight value can be increased. The purpose of the links is to represent the current situation by

changing dynamically over time. There can be several sources that relate to a particular path,

but over time, one or other of them may become more popular. The linking structure therefore

includes a descriptive path and a set of sources. For an update, the service then retrieves all

sources that it has stored under that path. If a stored source reference is part of the current

update, the source weight can be incremented. If it is not part of the current update, the weight

value can be decremented. So adding or updating link information will only reinforce the

current result set and decrement all of the other ones that are part of the same path structure.

You only need to add a linking service to your own service and then invoke the

addRelatedSources method on it to maintain the dynamic links.

//some variables that might be required

String serverPassword; //server password

String servicePassword; //service password

Element serverUri; //server uri

Element serviceUri; //service uri

ArrayList sources; //list of source references

ArrayList concepts; //list of concepts in the link path

ArrayList negativeConcepts; //list of concepts to block a link

MethodInfo methodInfo; //method info

CallObject callObject; //call object

//you need to know what address the remote server is running on

serverUri = remote server handle to call.

//you can create the service uri from the server uri and the service uuid as follows

serviceUri = Handle.createNewUrlHandle(Handle.getURI(serverUri));

serviceUri = Handle.addToHandle(serviceUri, Handle.asHandleElement(serviceUuid));

serviceUri = Handle.addToHandle(serviceUri,

 Handle.asHandleElement(ServiceConst.LINKER));

servicePassword = passwordHandler.getServicePassword(serviceUuid); //or serviceUri

//a hopefully simpler way to add the links is through single lists for each path separately

//this is the path description in order, for example query conditions, or metadata values

concepts = new ArrayList();

concepts.addElement(concept1);

concepts.addElement(concept2);

//retrieve the references to the sources that you want to include as links

//this could be a direct reference or a uri path, or mostly, a Handle description

sources = new ArrayList();

sources.addElement(source URI 1);

sources.addElement(source URI 2);

//negative concepts is part of a test case and can usually be empty

negativeConcepts = new ArrayList();

//make a method call to add the new linking information

methodInfo = new MethodInfo();

methodInfo.setName(MethodConst.ADDRELATEDSOURCES);

methodInfo.setRtnType(TypeConst.ARRAYLIST);

methodInfo.setServerURL(serverUri);

methodInfo.setServiceURI(serviceUri);

methodInfo.setServerPassword(serverPassword);

methodInfo.setPassword(servicePassword);

methodInfo.addParamInfo(sources);

methodInfo.addParamInfo(concepts);

methodInfo.addParamInfo(negativeConcepts);

call.call(methodInfo);

This should create a structure like: concept1->concept2->all source references

RETRIEVE DYNAMIC LINK INFORMATION

You can then ask a particular service if it has any dynamic links that relate to a certain linking

path, or list of concepts. Only the links that are at the top level (pass the top threshold value, see

the papers) in the linking structure will be returned. You use the getLinkedSources

method to do this. Other more local or admin-related methods can retrieve the whole structure.

//some variables that might be required

String serverPassword; //server password

String servicePassword; //service password

Element serverUri; //server uri

Element serviceUri; //service uri

ArrayList sourcePaths; //list of source paths

ArrayList concepts; //list of concepts in the link path

ArrayList negativeConcepts; //list of concepts to block a link

MethodInfo methodInfo; //method info

CallObject callObject; //call object

//initialise the call invocation object and retrieve the server passwords.

//the server URL is appended with Const.HTTPSERVER as part of the handle address.

callObject = new CallObject();

serverUri = remote server to call.

//you can create the service uri from the server uri and the service uuid as follows

serviceUri = Handle.createNewUrlHandle(Handle.getURI(serverUri));

serviceUri = Handle.addToHandle(serviceUri, Handle.asHandleElement(serviceUuid));

serviceUri = Handle.addToHandle(serviceUri,

 Handle.asHandleElement(ServiceConst.LINKER));

//add the concepts in the link path

concepts = new ArrayList();

concepts.add(concept1);

concepts.add(concept2);

//make negative concepts empty for default use

negativeConcepts = new ArrayList();

//also need the server uri and password, and the service password.

//Other code examples show how these can be saved and retrieved from the PasswordHandler

serverPassword = passwordHandler.getServicePassword(serverUri);

//the password can be saved under different formats – local uuid or full handle address

servicePassword = passwordHandler.getServicePassword(serviceUuid);

//make the method call to retrieve any link information

methodInfo = new MethodInfo();

methodInfo.setName(MethodConst.GETLINKEDSOURCES);

methodInfo.setRtnType(TypeConst.ARRAYLIST);

methodInfo.setServerURL(serverUri);

methodInfo.setServiceURI(serviceUri);

methodInfo.setServerPassword(serverPassword);

methodInfo.setPassword(servicePassword);

methodInfo.addParamInfo(concepts);

methodInfo.addParamInfo (negativeConcepts);

sourcePaths = (ArrayList)callObject.call(methodInfo);

The mechanism works exactly as expected. If, for example, you increment by 0.1 three times

and the threshold is 0.25, then it should become a reliable top level source. If you then

decrement once, it should be moved down a level and not be returned.

