PARSE WSDL TO CREATE MODEL OF WEB
SERVICE

The easiest way to make a dynamic web service call is to write a GUI interface to your service
that loads in and parses the selected WSDL document. It should then display each method with
a set of parameters, where the base classes allow complete manipulation of this, to add specific
values and invoke the web service. Something like:

WsdlParser wsdlParser = new WsdlParser();
WsdIModel wsdIModel = wsdlParser.parse(wsdlAddress);

The model can then be initialised first by calling:
wsdlModel.convertMessagesToParameters()

This call should be made only once. In effect, it will create an empty skeleton structure in the
model object, but with all of the required parameter fields present for any method structure that
you will use. The different wsdl document parts are stored in related separate model sections.
For example, the messages are stored in 'WsdIMessage' objects and the types in the "WsdITypes'
object. You can then traverse this object and enter a value for each of the parameters.

There are now methods in the WsdlOperation class to select the set of parameters for only
‘SOAP’, ‘Http GET’ or ‘Http POST’, but SOAP is used by the system only. These relate to the
constant values of WsdIConst.SOAP / GET or POST respectively. A method like:

paramList = wsdlOperation.getinParamNames(WsdIConst.SOAP)
will retrieve the input parameter set for the SOAP method call only. Some further programming
is required to complete the task, but it should be much easier now. You can print out the

structure to check for bugs. Some wsdl files might not match the port type to the port exactly. If
that is the case, there is just one check that will select the first available port that is stored.

INVOKE AWEB SERVICE
The following example shows how a Web Service call might be made:

String wsdlAddress = “http://wsdl address/wsdl file.ws?WSDL”; //any address
/[From your GUI

WsdlParser wsdlParser = new WsdlParser();
WsdIModel wsdIModel = wsdlParser.parse(wsdlAddress);

//Ask the User to enter a value for each parameter in the selected operation

/lthis might be added to the model as follows

WsdlOperation wsdlOperation = wsdIModel.getOperation(“Method Name");

WsdlParameter ~ wsdlParameter = wsdlOperation.getinParamAt(“Parameter =~ Name”,
parameterindex);

wsdlParameter.addValue(“Parameter Value”);

/[For a SOAP Web Service method invocation you might then use
CallObject callObject = new CallObject();
String commProtocol = WsdIConst.SOAP / GET or POST;
WebServiceMethodInfo webServicelnfo =
wsdIModel.getWebServicelnfo(wsdlOperation.getName());

if (webServicelnfo != null)
{
I/ISOAP call
WebSoapService soapService = new WebSoapService();
reply = soapService.webServiceCall(commProtocol, wsdlOperation,
webServicelnfo);

//check reply type and status and process as required

